Related Keywords

No Related Keywords

Register NowHow It Works Need Essay Need Essay
Rate of Reaction - Sodium Thiosulphate and Hydrochloric Acid
0 User(s) Rated!
Words: 2794 Views: 700 Comments: 0
?Aim??Investigation, to find out how the rate of reaction between Sodium?Thiosulphate and Hydrochloric acid is affected by changing the?concentration.??Introduction??I must produce a piece of coursework investigating the rate of?reaction, and the effect different changes have on them. The rate of?reaction is the rate of loss of a reactant or the rate of development?of a product during a chemical reaction. It is measured by dividing 1?by the time taken for the reaction to take place. There is five?factors which affect the rate of a reaction, according to the?collision theory of reacting particles: temperature, concentration of?solution, pressure in gases, surface area of...
due to?time restrictions.??· I used ICT to display my coursework, but I did not use it in anyway?that affected the experiment.??· I would like to do a further experiment to confirm my results.?However I am restricted by time and the available facilities which?means I cannot repeat it.??· Also instead of using a cross on a piece of paper I could use a?single beam of light until it could no longer be seen??· Use of computer to aid analysis of results??· Carry out all of the experiments on same day to improve accuracy??· Calculate more than ten tangents to improve accuracy?
Become A Member Become a member to continue reading this essay orLoginLogin
View Comments Add Comment

Aim: To investigate... Aim: To investigate the rate of reaction between Hydrochloric acid and marble chips. Background Knowledge: Factors that affect the rate of reaction between hydrochloric acid and marble chips or any other reaction are called variables. They are: ¨ The surface area of the chips Solids with a large surface area react faster than solids with a smaller surface area. This is due to the fact that if there is more area on the solid to react with the substance the reaction is able to occur much faster. Page 79 "“ GCSE Chemistry revision Guide This diagram shows a large particle small surface area and lots of small particles large surface area and how the particles can react with more area on the smaller pieces. ¨ The temperature of the acid The more heat particles have, the more energy they have. So if the particles have more energy they're going to move around faster. As they're moving around faster, there's more chance of collisions. So the higher temperature increases collisions therefore speeds up the reaction. Page 79 "“ GCSE Chemistry revision Guide This diagram shows the difference in movement between hot and cold particles. ¨ The concentration of the acid As the concentration increases, the rate of reaction increases. This, like the temperature of the acid, is based on the collision theory. The higher the concentration, the more particles therefore the more collisions so the reaction takes place faster. Page 79 "“ GCSE Chemistry revision Guide This diagram shows the movement and difference between a low concentration of particles and a high concentration of particles. ¨ Catalysts A catalyst speeds up a reaction. It does this by lowering the activation energy. The activation energy is what is needed to turn reactants marble chips into products hydrogen gas. To make reactants turn into products a sufficient amount of energy is needed to make the particles collide to start the reaction. This is activation energy and it gives an exothermic reaction the energy it needs to continue the reaction. Catalysts lower the activation energy so it is easier for particles to react so a lot more particles have enough energy to react, therefore, speeding up the rate of reaction. Page 79 "“ GCSE Chemistry revision Guide This diagram shows how a catalyst gives particles something to stick to, increasing the number of collisions. Page 80 "“ GCSE Chemistry revision Guide This graph shows the effect of a catalyst on the rate of reaction. The factors that affect the rate of reaction are all based on the collision theory. The theory that all particles have to collide to cause a reaction. Preliminary work: To investigate the different concentrations of the acid would be the easiest to measure conducted over a short period of time and satisfactory results would be produced. To measure the rate of reaction, the amount of gas given off could be measured. From the equation: CaCO3 + 2HCL à CaCL2 + H20 + CO2 It is seen that a gas is produced, CO2 so the amount of gas that is produced at different concentrations could be measured. A mole calculation was used to find out how much Calcium Carbonate to use. If I use a 100cm3 measuring cylinder to measure gas: 24000cm3 of gas is 1 mole of gas 100/24000 = 1/240 = 4.2 x 10-3 moles CaCO3 : CO2 1 : 1 1 mole : 1 mole 100g : 44g 4.2 x 10-3 m : 4.2 x 10-3 m 4.2 x 10-3 m x 100g = 0.42g 0.42g of calcium carbonate should produce 100cm3 of gas. Therefore, the minimum of calcium carbonate I will use to get sufficient results is 0.5g. I will be using five different concentrations of acid: 100%, 75%, 50%, 25% and 0%. So the amount I will use will be: 100% = 20cm3 HCL 0cm3 Water 75% = 15cm3 HCL 5cm3 Water 50% = 10cm3 HCL 10cm3 Water 25% = 5cm3 HCL 15cm3 Water 0% = 0cm3 HCL 20cm3 Water This is used as a control A 0% concentration will be used as a control to see if calcium carbonate would react with water or not. This would then make sure that the reaction only takes place if HCL is present. Prediction: The higher the concentration, the faster the reaction will occur. From background knowledge, it is known that a reaction will occur when particles collide, so the more particles there are the more collisions there will be. If there are more reactant particles per set volume higher concentration more collisions will occur per second, consequently, more particles reacting per second and the rate of reaction is increased. So for a lower concentration there will be less particles, so there will be less collisions therefore the reaction will be slower. Also the higher the concentration the more gas will be produced. This is because if there's more particles higher concentration reacting with the solid marble chips then the reaction will take place quicker. Consequently, the lower the concentration, the less particles to collide and start a reaction so less gas is produced. Equipment: · HCL · Water · Marble chips · Pessel and mortar · Stopwatch · Weighing scales correct to 2d.p. · Spatula · Water trough · Measuring cylinder x2 · Boiling tube with bung and pipe · Clamp stands x2 Method: To measure the rate of reaction, time how long it takes for the marble chips to react and measure the gas given off. To do this put a 100cm3 measuring cylinder in a water trough, with water inside it, held up by a clamp stand. Then put the pipe from the boiling tube under the measuring cylinder. The boiling tube with a pipe will be held by another clamp stand opposite the measuring cylinder. Crush the marble chips into powder with a pessel and mortar and measure out 0.5g of powder for each experiment with the weighing scales. Then, measure the amount of water and HCL needed with the second measuring cylinder. For each different concentration the exact same thing will be done. Put the HCL/Water solution into the boiling tube and make sure the pipe is under the measuring cylinder. After that pour the calcium carbonate powder into the solution, then start the stop clock and put the bung on the boiling tube the same time the calcium carbonate goes in. Then, every five seconds, measure how much gas has been produced using the scale on the measuring cylinder. Repeat the experiment three times for each different concentration and then take an average. Diagram: Chemistry for you page 190 This diagram is similar to the experiment conducted except a boiling tube held by a clamp stand with a pipe and bung was used instead of a flask. Fair test: · The marble chips are crushed to make sure the surface area is the same for each experiment because a larger surface area would take longer to react than a smaller one. So if all the chips are of the same surface area, then they will all react at the same speed, making it a fair test. · All the HCL will be of the same strength, as all experiments will use the same HCL from the same bottle. Stronger acid will speed up the rate of reaction. · The water and acid will be of the same temperature each time because temperature affects the rate of reaction. · After each experiment, the boiling tube will be cleaned properly to get rid of the acid and bits of Calcium carbonate so there's no extra acid or calcium carbonate in the next experiment. · The 100cm3 measuring cylinder will always be full to the top with water so that measurements will be fair. Safety: · To ensure that no acid gets into anyone's eyes, safety goggles will be worn. · Make other persons aware of harmful chemicals. HCL · Necessary medical equipment near by, e.g. eye wash. · Have a cloth or towel near by to clean up any spilt acid so it isn't hazardous to anyone around. Results: Amount of HCL cm3 Amount of water cm3 Gas produced every 5seconds cm3 Average 1st time 2nd time 3rd time 20 0 25 24 25 24.67 45 44 40 43.00 55 57 53 55.00 61 60 57 59.33 65 68 64 65.67 67 68 66 67.00 68 69 67 68.00 69 69 68 68.67 70 71 69 70.00 70 70 70 70.00 70 70 70 70.00 70 70 70 70.00 15 5 20 19 22 20.33 38 35 40 37.67 44 40 41 41.67 47 44 42 44.33 48 45 45 46.00 51 47 46 48.00 53 50 48 50.33 55 54 49 52.67 57 56 50 54.33 58 57 55 56.67 59 58 58 58.33 61 59 59 59.67 64 60 60 61.33 64 62 63 63.00 65 63 65 64.33 66 65 66 65.67 66 67 70 67.67 66 67 71 68.00 10 10 12 10 13 11.67 26 23 20 23.00 29 25 26 26.67 31 27 27 28.33 32 28 28 29.33 33 28 29 30.00 34 29 32 31.67 35 31 34 33.33 36 32 35 34.33 36 33 37 35.33 37 35 38 36.67 38 36 39 37.67 39 37 39 38.33 39 38 40 39.00 40 38 41 39.67 41 39 41 40.33 41 40 42 41.00 43 40 43 42.00 43 41 44 42.67 44 42 44 43.33 45 43 45 44.33 45 44 45 44.67 45 44 46 45.00 5 15 12 13 11 12.00 20 19 21 20.00 23 24 22 23.00 24 24 25 24.33 25 25 25 25.00 25 25 25 25.00 25 26 26 25.67 0 20 0 0 0 0 All results will be plotted on the same graph. This will then make it easier to analyze my results. The average amount of gas measured cm3 will be plotted against time seconds. Graph to show results: The graph was produced by hand and scanned into the word document. Analysis: All concentrations produced gas rapidly to begin with but the most rapid was the 100% concentration. This happened with all the different concentrations except they all started to increase with a steady rate at different times. 100% 30 seconds 75% 15 seconds 50% 10 seconds 25% 10 seconds From this we can see that the higher the concentration, the faster the reaction starts and the longer it continues rapidly. The graph indicates this in the linear gradient of the slope. As the reaction increases the gradient becomes steeper. This result supports the predictions made based on the collision theory. As there are more particles in a higher concentration, there are more collisions so the reaction is faster. When the graph became flat, it was shown that there was no more solid to react with the HCL saturation. The reactions all varied in how long the reaction took place for. 100% 60 seconds 75% 90 seconds 50% 115 seconds 25% 40 seconds The longest reaction was the 50% concentration. The graph shows this by the line leveling out for longer linear gradient. Although it was the longest reaction it didn't produce the most gas. It just produced gas very slowly as it was a low concentration, because there wasn't enough particles to react to make the reaction faster. So gas was produced but very slowly and not much of it. 100% concentration solution was over quickly again, shown by the line on the graph and produced a lot of gas; due to there being more particles to react with the solid marble chips. The 25% concentration however, took place over an even shorter time than the 100% concentration but a lot less gas was produced in the 25% concentration again, due to there not being many particles. The different concentrations also varied on how much gas was produced overall on average. 100% 70.00 cm3 75% 68.00 cm3 50% 45.00 cm3 25% 25.67 cm3 As predicted, the most gas was produced by the higher concentration and the least gas was produced by the lowest concentration. From the graph it can be seen that for different concentrations the amount of gas produced varies. This is due to there being more particles in a higher concentration to react with the solid marble chips. The results gained support the theory that the more concentration, the faster the reaction and the more gas is produced. This matches the predictions made. It is also seen that as the concentrations become less, gas is produced at a much slower, yet at a steady rate because of not having enough particles to react with the substance making the reaction slower. The conclusions and prediction are all based on the collision theory: All particles have to collide in order to react with one another. Evaluation: The method used for conducting the experiment was an effective one as: · It was easily done over the amount of time given in class to conduct the experiment. · It was simple and easy to repeat a lot of times to get enough results to calculate averages. · Produced sufficient results and were easy to present on a graph to compare. · It was a safe experiment. · It was an easy experiment to make sure everything was a fair test and accurate. If the investigation was to be done again, consideration may be given to repeating the test a few more times for each concentration to produce a better average. From the graph it can be seen that some of the concentrations don't level out. This is because for each concentration, each time the experiment was conducted; the gas stopped being produced at different times. So when the average was taken it didn't always show the gas had stopped being produced. So the graph doesn't always level off. Maybe if the gas produced every 5 seconds had been recorded more times, say 10 or 20, instead of 3, the graph would've leveled off. Another reason for this is maybe that the experiment wasn't left going for long enough and a few more bubbles of gas could've been recorded giving more accurate results. It is shown on the graph that the 50% concentration produced more than the 75% most probably because of the reason just mentioned. Even though the results weren't as accurate as they could've been for the reasons mentioned above, they still verified the predictions and conclusions made. Further experiments could be conducted to extend the work I have done. These could be to investigate the other variables in the same way I have conducted my experiment: · Surface area "“ different sizes of marble chips for each experiment. · Temperature of the acid "“ investigate a range of temperatures. · Catalysts "“ investigate the effect of a catalyst in an experiment. If then all these different factors were investigated, all the results could be put together to prove the conclusions further. Bibliography: Books: 1. Chemistry For You, National Curriculum Edition for GCSE "“ Lawrie Ryan Page 190 "“ diagram of experiment 2. Revision Guide for GCSE Double Science, Chemistry, Higher level "“ Richard Parsons Page 79 "“ diagrams to show how different variables affect the rate of reaction Page 80 "“ Graph to show the effect of a catalyst on the rate of reaction Websites: 1. 2.   

Aim: To investigate the rate of reaction between Hydrochloric acid and marble chips. Background Knowledge: Factors that affect the rate of reaction between hydrochloric acid and marble chips or any other reaction are called variables. They are: ¨ The surface area of the chips...

Words: 2875 View(s): 729 Comment(s): 0