Related Keywords

No Related Keywords

Register NowHow It Works Need Essay Need Essay
Rates of reaction Plan Aim: In this experiment I will find the rate of reaction between Sodium thiosulphate NaS2o3 and Hydrochloric acid HCl. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I will investigate how temperature affects the rate of reaction between Sodium thiosulphate and Hydrochloric acid. Prediction When sodium thiosulphate and hydrochloric acid react they produce a cloudy precipitate. The two chemicals are both clear solutions and will react together to form a yellow precipitate of sulphur, the equation for which is as follows: NaS2O3 aq+ HCll¨Sg+NaCls+ H2Ol+SO2s As the solution will turn cloudy, we can observe the rate of reaction by placing a black cross underneath the beaker and seeing how long it takes for it to disappear. There are factors that affect this experiment such as temperature, concentration and time. I do not think that surface area will affect the experiment, as both chemicals are liquids. For my experiment I will study temperature as this is easily observed and can be easily varied. I think that as the temperature of sodium thiosulphate increases, the amount of time taken for a reaction decreases. I know this because before two particles can react they must meet. The higher the temperature there is the more successful collisions between other particles is increased. When temperature increases the bonds in NaS2O3 break quicker because more energy is available greater than the activation energy of the reaction. As a result S2O3 2- ions are available so it takes less time to bond with H+ ions from HCL and new bonds are formed quicker and therefore sulphur precipitates quicker and the rate of reaction increases. S2o3 2- aq +2H+ aq S02aq+Sg+H2Ol When the temperature increases it causes an increase in kinetic energy so you have more chances of successful collisions between NaS2O3 particles and HCl particles so the rate of reaction increases. Also more activation energy is made available to overcome the activation energy of the reaction; the reactants have greater energy than the activation energy, so the reaction takes place quicker. I will keep the concentration of NaS2O3 constant to prevent more successful collisions as there would be more particles available if a higher concentration is fed which will increase successful collisions. I will also keep the concentration of HCl constant as an increase or decrease in concentration will affect the rate of reaction. I will change the temperature of NaS2O3 so I can see how the temperature affects the rate of reaction. I will keep the temperature of the HCl acid at room temperature as we are only concentrating on the NaS2O3 and if we heat the HCl it might affect the rate of reaction it would not be a fair test if we heat the HCl when we are observing how NaS2O3. I also predict that every time the temperature increases by 10oC the rate of reaction doubles. The preliminary results Time on heat sec Temperature of NaS2O3 0C Time taken for cross to disappear sec 0 24 60 10 34 52 Method For the preliminary experiment I heated the NaS2O3 to get it to the temperature I wanted but it was difficult to get the NaS2O3 to the right temperature so the results were not as accurate, but for my real experiment I will use a water bath to get accurate results instead of a Bunsen burner. For the preliminary experiment I only recorded the temperature of the NaS2O3 but for my real experiment I will record the temperature of the HCl as well to get more accurate results because if the NaS2O3 was high and the HCl could bring the temperature down quicker and also have to make sure all the temperature of the HCl is the same. I will also take the temperature of the mixture so I know the temperature at which the reaction took place. 1. I will set up my apparatus and put an X on a piece of paper and measure out 50ml of NaS2O3 and 10ml of HCl. 2. I will pour the NaS2O3 into a conical flask and measure the temperature and pour the HCl in to the same conical flask and time how long it will take for the cross on the paper to disappear. 3. I will do 4 different temperatures and I will do them three times each to get accurate results. 4. I will record the results in a table of results. Apparatus used Sodium thiosulphate NaS2O3-50ml Hydrochloric acid HCl-1M Conical flaskx2 Measuring cylinderx2 Thermometer Water bath at different temperatures Paper marked with X Stop watch Distilled water Analysis From graph 1 I can see that when temperature increases the time taken for reaction to take place decreased. In graph 2 I can see when temperature increases the rate of reaction increases. There was an anomalous result in graph 2, when the temperature was 480C and 1€time was 1.18. My results agree with my prediction because I predicted that the higher the temperature the lower the time taken for the reaction to take place and we can see this from the graphs. The graph shows this pattern taking place. For my experiment I studied temperature as this is easily observed and can be easily varied. The temperature of sodium thiosulphate increased, and the amount of time taken for a reaction decreased. When temperature increased the bonds in NaS2O3 broke quicker and more energy is available greater than the activation energy of the reaction and S2O3 2- ions are available so it takes less time to bond with H+ ions from HCl and new bonds were formed quicker and therefore sulphur precipitated quicker and the rate of reaction increased. This is why in graph 2, I had a strait line positive correlation graph. When the temperature increased it caused an increase in kinetic energy so we had more successful collisions between NaS2O3 particles and HCl particles and the rate of reaction increased. Also more activation energy was made available to overcome the activation energy of the reaction; the reactants had greater energy than the activation energy, so the reaction took place quicker. I think my results support my prediction because I predicted when temperature increases the rate at which the reaction takes place is faster. In graph 2, the theory that every time the temperature increases by 10oC, the rate of reaction will double did not work in my experiment and the results of that theory is given below: 10"¹C¨0.018 0.024€0.018=1.333 20"¹C¨0.024 0.052€0.024=2.167 30"¹C¨0.052 0.078€0.052=1.500 40"¹C¨0.078 0.086€0.078=1.103 50"¹C¨0.086 0.104€0.086=1.209 60"¹C¨0.104 0.120€0.104=1.154 70"¹C¨0.020 0.1380.120=1.1500 80"¹C¨0.138 Evaluation I think my method worked well as I repeated the experiments three times for five different temperatures and got three results which were similar. I think the experiment worked but when we used NaS2O3 with a high temperature, it was difficult for us to time the reaction as it was more rapid than we had expected. If I had the chance to repeat the experiment I would concentrate on the concentration of the NaS2O3 rather than the temperature as there are a lot of factors which could affect the temperature. I think my experiment was done reasonably well as l got similar results when I repeated them three times. There was one anomalous result in graph 2 and I think there was an anomalous result because the NaS2O3 was at a high temperature and the reactants reacted rapidly that the timing was wrong. I also think this was caused by the open window we worked next to which brought the temperature down quickly. I think my results are fairly reliable and it supports my analysis as I said, when temperature increased the time taken for the reaction to take place decreased. I could try the experiment with different methods and different reactants to get additional knowledge. I could use magnesium instead of Sodium thiosulphate and I could heat the hydrochloric acid instead of heating the NaS2O3 and to make more of a fair test I could make sure all the windows and doors are closed and no cold air comes in.
0 User(s) Rated!
Words: 1454 Views: 464 Comments: 0
Rates of reaction Plan Aim: In this experiment I will find the rate of reaction between Sodium thiosulphate NaS2o3 and Hydrochloric acid HCl. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I will investigate how temperature affects the rate of reaction between Sodium thiosulphate and Hydrochloric acid. Prediction When sodium thiosulphate and hydrochloric acid react they produce a cloudy precipitate. The two chemicals are both clear solutions and will react together to form a yellow precipitate of sulphur, the equation for...
worked next to which brought the temperature down quickly. I think my results are fairly reliable and it supports my analysis as I said, when temperature increased the time taken for the reaction to take place decreased.

I could try the experiment with different methods and different reactants to get additional knowledge. I could use magnesium instead of Sodium thiosulphate and I could heat the hydrochloric acid instead of heating the NaS2O3 and to make more of a fair test I could make sure all the windows and doors are closed and no cold air comes in.

Become A Member Become a member to continue reading this essay orLoginLogin
View Comments Add Comment

Introduction In this... Introduction In this assignment I will investigate hazard and prevention. This is three tasks assignment. In task one I will make a checklist and definition of checklist and why we should make a checklist for any place. For task two I have given an A4 sheet with tropical image of accidents. For this task I need to find out these accidents and write how I could prevent them. Fro task three I need to write all about hazards and anything related to this. Task one In this task I am going to make a checklist for my chemistry lab. Checklist is a tool to ensure all-important steps or actions in an operation have been taken. Checklist contains items important or relevant to an issue or situation. Checklist is a safety list. Checklist is a list of different equipment in a lab or home or office. Make sure that all the equipment listed in the checklist and it should check once or twice a year. A checklist helps us to find out what type of equipment we get a specific place, such as lab or home. If I don¡¦t have a checklist, than I can¡¦t tell what I have gets in a place such as lab or home. Checklist often confused with check sheet. Check sheet is a simple data-recording device. The check sheet is custom designed by the user, which allow him or her to readily interpret the result. I am going to make a checklist about G4 Chemistry laboratory. I will check each item once a year. Category Date of checking Any thing wrong Yes No Action Job Done First Aid Eye wash 20 /08/2002 Water line block Call an plumber Clear the line. Fire fighting Equipment Fire Extinguisher Fire Blanket Fire Alarm Fire Exit Sand Bucket Main Equipment Gas guard Electric power supply Gas tapes Electric sockets Equipment Broken bucket Bin bag Water bath Oven Special equipment Distilled water Eye/body protection Lab coat Goggle Spectacles Face shield Experiment safety Hazards warning sign Safety screen Task two a I have given an A4 sheet paper where they gave me a typical image of an accident waiting to happen in the laboratory. My task is to identify these accidents and explain how I could prevent them happening. List of the accident may happen in this laboratory: 1. A boy doing an experiment where chemicals will fall of on his body. And he didn¡¦t wear an eye protection. And height of the object is not appropriate for him. 2. A girl doing en experiment but her long hears were untied, under her hair there is a Bunsen burner with fire. 3. Middle of the class room there is water on the floor. 4. A boy opens an electric socket without teacher permission. He might get electric shock. 5. All students do not wear eye protection. 6. A girl playing with the rubber band and disturbing other to do their experiment. 7. A girl doing experiment but her test tube face at her chemicals will go on to her body. 8. A girl doing an experiment but her test tube faced straight to up. Hot chemicals may explore and fall on to her body. 9. A girl holding a hot bicker without a glove. 10. A girl looking to other girl and mistakenly she put her hand up on the hot gorse. 11. A boy carrying box but he can¡¦t see anything what happen to front. 12. Main exit door blocked by boxes. If fire in the room no one can get out. 13. Teacher given demonstration about chemical where students were too close and there is no safety screen. None of these students wearing goggle. 14. A girl put an iron stand at the edge of the tale. It could fall onto someone¡¦s foot. 15. Some one put a biker up on the gorse at the edge of the table. 16. Bunsen burner left with blue fire. I could prevent these accidents by: 1. Height of the object must be appropriate for him. And he must wear a goggle to do chemical experiment. 2. This girl must tie her hear up and when she does not use Bunsen burner she must left it with yellow coloured fire. 3. Clean the water as soon as possible. Otherwise someone may slip n the floor. And it may break their leg or hip. 4. Teacher must warn students about electric socket that students never try to open an electric socket. It is dangerous to get an electric shock. 5. All students doing various experiments, but none of them use eye protection. Chemicals or other thing could spill in to the eye. To prevent this happen teacher must tell students advantage of wearing a goggle which can save my eyes to have any damages. 6. Tell her play outside. 7. Test tube must not face to you or other people, because chemical may explore and go onto your body. 8. Test tube must put diagonally, because if test tube put straight up and chemicals heated than chemical will explore and could fall onto your body. 9. If anyone needs to hold some thing hot they must use glove. Because otherwise they might burn themselves. 10. If anyone does any experiment they must concentrate with their experiment. 11. Tell him to remove these boxes after the class. 12. Clear the door way. 13. Use a safety screen and student must wear goggle. 14. Put the iron stand middle of the table. 15. Put bicker and gorse middle on the table. 16. Bunsen burner must be left with yellow flame. Task two b In this task I will write about three accident and necessary emergency procedures could be used in these accident. There are the accidents: ƒ¾ Chemical in the eye ƒ¾ Chemical burn ƒ¾ Electric shock Chemical in the eye: splashes of chemicals in the eye can cause serious injury if not treated quickly. Recognition of chemicals there may be: "žÃ Intense pain in the eye "žÃ Inability to open the injured eye "žÃ Redness and swelling around the eye "žÃ Copious watering of the eye "žÃ Evidence of chemical substance or containers in the immediate area. Treatment: First thing do not allow the casualty to touch the injured eye or forcibly remove contact lens. Hold the affected eye under gently running cold water for at least ten minutes. Make sure that you irrigate both sides of the eyelid thoroughly. If the eye is shut in a spasm of pain, gently but firmly pull the eyelid open. Be careful that contaminate/rotten water does not splash the uninjured eye. Ask the casualty to hold sterile eye pad or any clean pad or non-fluffy materials over the injured eye. Than take or send the casualty to the hospital. Chemical burn: certain chemicals may irritate, harm or be absorbed through the skin, causing widespread and some times fatal damage. Recognition of chemical there may be: "žÃ Evidence of chemical in the vicinity "žÃ Intense, stinging pain "žÃ Later, discolouration and swelling of the affected area. Treatment: Never attempt to neutralise acid or alkali burn unless trained to do so. Do not delay starting treatment by searching for an ambulance. First make sure that injured area is safe. Ventilate the area and remove the casualty if necessary. And seal the chemical container if possible. Flood the affected area with water to disperse the chemical and stop the burning. Do this at least 20 minutes. Gently remove the pollute clothing during flooding the injury. Take or sand the casualty to hospital. Give the details about chemical to medical person. Electric shock: Domestic current, as used in home, office, college lab etc, can caused serious injury and even death. Action: do not touch the casualty if they contact with electrical current, he will be ¡§live¡¨ and risk electrocution. Do no use anything metallic to push away the electrical source. Try to switch off the socket or main power, if you can¡¦t switch off than stand on dry insulating materials such as a wooden box or telephone guide. Push the casualty¡¦s limbs away from the source with a broom, wooden chair or stool or push the push the source from the casualty, whichever is easier. If the casualty is unconscious, open the airway check for breathing and be ready to place them in recovery position. Cool if there any burn with cold water. Dial 999 for an ambulance. If the casualty seems to be unharmed, advise them to rest. Observe them closely and, if in doubt, call a doctor. If the hart stops apply the ABC Airway, Breathing and Circulation signs of life of resuscitation until a normal heartbeat returns or specific medical treatment is given. Task three Hazard & Risk The term "risk" is often confused with "hazard". A high voltage power supply, a sample of radioactive metal, or a toxic chemical may present a hazard, meaning that they present the potential for harm. Concentrated acids, for example, clearly present the hazard to the user of serious burns if they are handled incorrectly. A hazard is something with the potential to cause harm of life e.g. this can be a substance, part of a machine, form of energy, method of work or a situation. Harm includes death, injury, physical or mental ill health, damage to property, loss of production, damage to the environment or any combination of these. Risk is a measure of the likelihood that the harm from a particular hazard will occur, taking into account the possible severity of the harm. The risk is the probability or chance that the hazard posed by the chemical will lead to injury. Thus, concentrated sulphuric acid is a hazardous chemical; because it is very corrosive and reactive. However, provided it is handled in an appropriate way the risks it poses may be small. For the risk to be real: "žÃ The threat must exist. "žÃ There is likely to be magnitude of effect. "žÃ There is potential for occurrence. It is thus evident that hazards are something we can do little about. The hazard posed by a carcinogen, a concentrated acid or an explosive substance is inherent properties of the material. The risks they pose, however, can be and should be! minimised by initially preparing a suitable risk assessment. Risk Assessment is the process of analysing the level of risk, considering those in danger, and evaluating whether hazards are adequately controlled, taking into account any measures already in place and any work practices that may be in force. I have to fill a risk assessment for my Physics experiment. Sample of that risk assessment form as below: Components of Hazards There are number of components to consider in defining hazard: ľ Intrinsic properties of the hazard. ľ The nature of the equipment or from of the material such as vapour, mist, liquid etc. ľ The exposure-effect relationship. ľ The pathways and frequency of use ľ Aspects of worker behaviour the affect exposure to the hazard. ľ Mechanisms of action. Type of Hazards: There are different types of hazards: Chemical hazard: through a variety of action, chemicals can cause damage to health and property. Some of these actions are explosive, flammable, corrosive, oxidation, poisoning, toxicity, and carcinogenicity. Biological Hazard: mainly from infection or allergic reaction. Biological hazards include viruses, bacteria, fungi and other organism. Some biological hazards such as AIDS or hepatitis B are potentially life threatening. Physical hazards: these include noise, radiation such as ionising, electromagnetic or non-ionising, heat, cold, vibration and pressure. Ergonomic hazards, psychological hazards, Lateral water hazards, EM hazards, health hazards etc. Components of Risk; ľ Individual variation in susceptibility. ľ The numbers exposed. ľ The degree of individual risk. ľ The possibility of elimination of a less hazardous substance or process. ľ The possibility of achieving of the hazard. ľ Public opinion and pressure groups. ľ Social responsibility. Perception of Risk: People judge risks differently. Judgments are made on the ease of recall and imagining. For example, the role of the media in bringing risk issues such as AIDS or asbestos to public attention in one exercise of this judgment. While risk analyses will provide some estimate of a risk in numerical terms, presentation of quantitative facts on risk rates often does not work well. Statistical expressions of risk are only one dimension of risk, and these may be irrelevant to lay people who view risk qualitatively. Warning signs represent a hazard level between Caution and Danger. A warning indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury. All the chemicals in the laboratory must have warning sign and labelled, because without a warning sign or label no one will know is it a corrosive, flammable or other dangerous chemical. To be safe in a laboratory than all chemical must be label and must have a warning sign. Example of some warning sign: A survey carried out in school science laboratory publisher in education in science. The result of that survey most common accident in the laboratory as below: Accident Percentage Chemicals in the eye 23% Chemicals on the body 21% Cuts 20% Burn & scalds 15% Dropping, falling, slipping, lifting, knocking 7% Chemicals in mouth 4% Inhalation 4% Animal bites 3% Explosions 2% Electric shock 1% Most common accidents in laboratory show in the pie chart as below; The result of the survey tell that chemical in the, is the most common, because students does not follow the safety rule. In the safety rule they give everything what student should do when they enter in a laboratory. Before get this result I thought cut will be the height common accident, but in this result show chemical in the eye is the most common accident. This because students don¡¦t understand the important of wear eye protection. They didn¡¦t listen to their teacher. The safest place from accident is science laboratory, because they have rule which you must need to follow. And mostly accident happened in home, because we don¡¦t have any rule in home. That way in the home there are most accident happened. For safe in laboratory they made a safety rule. A sample of a safety rule in science laboratory is below: To be safe in the laboratory we must follow the safety rules and we must have hazards warning sign and label. And minimise the risk we should do risk assessment. Before using a lab first thing to do is make a checklist of the entire item in the lab. Than check these once or twice a year. Safety check is very important because if something wrong in the lab than from safety check we could know about it. Safety check helps us to find out any fault or any thing change we need to do. In your home you also need a checklist, because if any thing stolen from your home police will ask you what the things stolen. In this time you need a checklist. You also need checklist for checking is your all machinery or other things work properly such as your washing machine, freezer etc. so a checklist very important for any particular place.   

Introduction In this assignment I will investigate hazard and prevention. This is three tasks assignment. In task one I will make a checklist and definition of checklist and why we should make a checklist for any place. For task two I have given an A4 sheet with...

Words: 2760 View(s): 385 Comment(s): 0
Rate Of Reaction in... Rate Of Reaction in Sodium Thiosulphate and HCl Plan in this experiment I am investigating the rates of reaction, and the effect different changes have on them. The rate of reaction is the rate of loss of a reactant or the rate of formation of a product during a chemical reaction. A rate of reaction is measured by dividing 1 by the time taken for the reaction to take place. There are five factors which affect the rate of a reaction, by the collision theory of reacting particles: temperature, concentration of solution, pressure in gases, surface are of solid reactants, and catalysts. Aim: - my aim is to see the effects of a change in temperature and concentration on the rate of a reaction. The reaction that will be used is: Sodium Thiosulphate + Hydrochloric Acid Na2S2O3 aq + 2HCl aq Sodium Chloride + Water + Sulphur Dioxide + 2NaCl aq + H2O l + SO2 g + Sulphur S s Two experiments will be carried out "“ one changing the temperature while everything else remains constant and one varying the concentration while keeping everything else constant. Both the sodium thiosulphate and the Hydrochloric acid are soluble in water, so the concentration of either can be changed. temperatures and concentrations to use during my preliminary series of experiments "“ 50cm3 of sodium thiosulphate solution and 5cm3 of hydrochloric acid as the experiment one con 1 mol/dm3 of HCl acid concentration will be fixed 10-35g/dm3 of sodium thiosulphate all of these concentrations will be tested in turn going up in steps of 5g/dm3 20-70°C temperature all of these temperatures will be used going up in steps of 10°C Concentrations of 5, and 40 g/dm3 of thiosulphate were available to me but my preliminary work showed that the 5 g/dm3 and 40g/dm3 were too slow and fast respectively in reacting to be worth testing. Similarly any temperature below 20°C reacted too slowly, and 80°C and 90°C reacted too quickly to be worth including in my final results. Using my preliminary experiments I decided on using the following apparatus: 1 thermometer 1 beaker 2 measuring cylinders 1 conical flask 1 tripod 1 gauze 1 heatproof mat 1 stopwatch 1 Bunsen burner X board 1 pair of tongs 1 pair of goggles 1 apron Method: - Experiment 1 - Changing the concentration 5 cm3 of HCl at concentration 1 mol./dm3 and 15 cm3 of sodium thiosulphate at varying concentrations "“ 10 to 35 g/dm3 are poured out into two measuring cylinders and then poured into a conical flask, which is placed on top of a board marked with letter X. The stopwatch will now be started. When the mixture has turned sufficiently cloudy so that the letter X can no longer be seen the stopwatch will be stopped and the time will be recorded. The experiment is repeated with all the concentrations. The whole procedure is then repeated. Experiment 2 "“ Changing the temperature 5 cm of HCl at concentration 1 mol./dm3 and 15 cm of sodium thiosulphate at varying concentrations "“ 10 to 35 g/dm3 are poured out into two measuring cylinders. A beaker is half filled with hot water from a tap. The water is placed on top of a Bunsen on a blue flame and the two measuring placed inside the water bath. The water is heated to the necessary temperature 30°C to 70°C then the two measuring cylinders are taken out and the contents of both are poured into a conical cylinder. The time it takes for the X to disappear is timed and recorded. The experiment is repeated using all the temperatures. The entire procedure is the repeated. Repeat results and averages will be taken to improve the credibility of the findings, and present solid grounding for the final conclusion. The repeat results will help to iron out any anomalies and the average will give a good summary of the results of the experiment. However if one set of results is entirely different to the other, a third experiment will be performed to replace the anomalous set of results. Safety "“ A pair of goggles will be worn during the heating part of the experiment in order to protect the eyes. An apron will also be worn to protect the skin and clothing. When handling hot beakers and measuring cylinders a pair of tongs will be used. A gauze and heatproof mat will be used while heating to avoid any damage to the equipment. Fair Test - In order for my findings to be valid the experiment must be a fair one. I will use the same standard each time for judging when the X has disappeared. I will make sure that the measuring cylinders for the HCl and thiosulphate will not be mixed up. The amount of HCl will be 5 cm3 each time, and the amount of thiosulphate will be fixed at 15 cm3. During the heating stage of the experiment, a blue flame will be used throughout. Also the same Bunsen burner and gas tap will be used to maintain continuity. All of these precautions will make my final results more reliable and keep anomalies at a minimum so thus make the entire investigation more successful. Prediction "“ I predict that as the temperature is increased the rate of reaction will increase. I also predict that as the concentration of the sodium thiosulphate increases the rate of reaction will increase. This means that both graphs drawn up in my analysis will have positive correlation, and will probably be curved as the increase in rate of reaction will not be exactly the same as the concentration temperature is increased. This can be justified by relating to the collision theory. When the temperature is increased the particles will have more energy and thus move faster. Therefore they will collide more often and with more energy. Particles with more energy are more likely to overcome the activation energy barrier to reaction and thus react successfully. If solutions of reacting particles are made more concentrated there are more particles per unit volume. Collisions between reacting particles are therefore more likely to occur. All this can be understood better with full understanding of the collision theory itself: For a reaction to occur particles have to collide with each other. Only a small percent result in a reaction. This is due to the energy barrier to overcome. Only particles with enough energy to overcome the barrier will react after colliding. The minimum energy that a particle must have to overcome the barrier is called the activation energy, or Ea. The size of this activation energy is different for different reactions. If the frequency of collisions is increased the rate of reaction will increase. However the percent of successful collisions remains the same. An increase in the frequency of collisions can be achieved by increasing the concentration, pressure, or surface area. Concentration "“ If the concentration of a solution is increased there are more reactant particles per unit volume. This increases the probability of reactant particles colliding with each other. Pressure - If the pressure is increased the particles in the gas are pushed closer. This increases the concentration and thus the rate of reaction. Surface Area "“ If a solid is powdered then there is a greater surface area available for a reaction, compared to the same mass of unpowdered solid. Only particles on the surface of the solid will be able to undergo collisions with the particles in a solution or gas. The particles in a gas undergo random collisions in which energy is transferred between the colliding particles. As a result there will be particles with differing energies. Maxwell-Boltzmann energy distribution curves show the distribution of the energies of the particles in a gas. The main points to note about the curves are: 1. There are no particles with zero energy. 2. The curve does not touch the x-axis at the higher end, because there will always be some particles with very high energies. 3. The area under the curve is equal to the total number of particles in the system. 4. The peak of the curve indicates the most probable energy. The activation energy for a given reaction can be marked on the distribution curve. Only particles with energy equal or greater than the activation energy can react when a collision occurs. Although Maxwell-Boltzmann distribution curves are for the particles in a gas, the same distributions can be used for the particles in a liquid or solid. Effects of a temperature change - The graph below shows Maxwell-Boltzmann distribution graphs for a fixed mass of gas at two temperatures "“ T1 and T2, where T2 is roughly 10°C higher than T1. The total area under the curve remains the same, since there is no change in the number of particles present. A small increase in temperature causes significant changes to the distribution energies. At the higher temperature: 1. The peak is at a higher energy. 2. The peak is lower. 3. The peak is broader. 4. There is a large increase in the number of particles with higher energies. It is the final change that results increase in rate, even with a relatively small increase in temperature. A small increase in temperature greatly increases the number of particles with energy greater than the activation energy. The shaded areas on the energy distribution curves show this. Effect of a catalyst - A catalyst works by providing an alternative reaction pathway that has lower activation energy. A catalyst does not alter the Maxwell-Boltzmann distribution. Because a catalyst provides a reaction route of lower activation energy, however, a greater proportion of particles will have energy greater than the activation energy. Secondary Sources Used: AS Level Chemistry Textbook kinetics module The Internet Dr. Jones's Chemistry Lessons Information sheets from Dr. Jones Obtaining Evidence Temp.°C Time 1 s Time 2 s Average s 20 110.67 107.42 109.045 30 100.13 103.34 101.735 40 64.20 65.92 65.06 50 45.34 37.73 41.535 60 30.12 33.18 31.65 70 18.92 16.34 17.63 Concen.g/dm3 Time 1 s Time 2 s Average s 10 222.63 224.38 223.505 15 150.90 147.03 148.965 20 105.25 105.97 105.61 25 66.04 68.75 67.395 30 55.63 56.1 55.865 35 27.32 25.96 26.64 Temp.°C Rate of Reaction 1s-1 Rate of Reaction 2 s-1 Average s-1 20 0.00904 0.00931 0.00917 30 0.00999 0.00968 0.00983 40 0.01558 0.01517 0.01537 50 0.02206 0.02650 0.02428 60 0.03320 0.03014 0.03167 70 0.05285 0.06120 0.05703 Concen.g/dm3 Rate of Reaction 1s-1 Rate of Reaction 2 s-1 Average s-1 10.00000 0.00449 0.00446 0.00447 15.00000 0.00663 0.00680 0.00671 20.00000 0.00950 0.00944 0.00947 25.00000 0.01514 0.01455 0.01484 30.00000 0.01798 0.01783 0.01790 35.00000 0.03660 0.03852 0.03756 Temp.°C Rate of Reaction 1s x1000 Rate of Reaction 2 s x1000 Average s 20 9.04 9.31 9.17 30 9.99 9.68 9.83 40 15.58 15.17 15.37 50 22.06 26.50 24.28 60 33.20 30.14 31.67 70 52.85 61.20 57.03 Concen.g/dm Rate of Reaction 1s x1000 Rate of Reaction 2 s x1000 Average s 10 4.49 4.46 4.47 15 6.63 6.80 6.71 20 9.50 9.44 9.47 25 15.14 14.55 14.84 30 17.98 17.83 17.90 35 36.60 38.52 37.56 Analysis In this experiment I have found that as the temperature and concentration is increased the time taken for the reaction to take place decreases. This means the rate of reaction increasers as it takes less time for a reaction to take place, so more take place per second. In the temperature experiment the time taken for a reaction to take place decreased by roughly 10 to 15 seconds for every 10°C increase in temperature, with the one anomaly being the 30°C reading. There is also a trend in the increase in rate of reaction as the temperature increases. The difference is always more or less 0.02 s-1, with the same exception. Using the graphs, with lines of best fit, I can draw a conclusion from my experiment. Firstly I can see that with the "time" graphs that plot temperature and concentration against time taken for the reaction to take place the graphs have negative correlation in both cases, meaning that as the temperature concentration increased the time taken for the reaction to take place decreases. The time graph for the temperature experiment has a much steeper curve than the one for the concentration experiment, meaning that the decrease in time taken for the reaction was far more rapid. Naturally, the above means that the both the graphs plotting rate against temperature and concentration have positive correlation "“ as the temperature and concentration are increased so does the rate of reaction. This is because when the temperature is increased the particles will have more energy and thus move faster. Therefore they will collide more often and with more energy. Particles with more energy are more likely to overcome the activation energy barrier to reaction and thus react successfully, and when solutions of reacting particles are made more concentrated there are more particles per unit volume. Collisions between reacting particles are therefore more likely to occur. The graph for concentration shows that when the concentrations were relatively low 10, 15, 20 g/dm3, the increase of rate x1000 was also fairly small increasing from 4.47 to 6.71 to 9.47. There was then a gradual increase in the difference, and between 30 and 35 g/dm3 the rate more than doubled from 17.90 to 37.56s-1. This shows that there are far more collisions at a concentration of 35 g/dm3 than at 30 g/dm3. The graph plotting time against the rate of reaction x1000 shows that the difference of rate between increasing temperatures excluding the anomaly of 30°C was pretty much regular, increasing in steps of 6-10 9.17 to 15.37 to 24.28 to 31.67. However, once again there is a giant gap in the last temperature increase "“ at 60°C the RoR x1000 is 31.67 s-1, and at 70°C it is 57.03 s-1. For this to fully make sense it is necessary to recap the collision theory briefly: For a reaction to occur particles have to collide with each other. Only a small percent result in a reaction. This is due to the energy barrier to overcome. Only particles with enough energy to overcome the barrier will react after colliding. The minimum energy that a particle must have to overcome the barrier is called the activation energy, or Ea. The size of this activation energy is different for different reactions. If the frequency of collisions is increased the rate of reaction will increase. However the percent of successful collisions remains the same. An increase in the frequency of collisions can be achieved by increasing the concentration, pressure, or surface area.   

Rate Of Reaction in Sodium Thiosulphate and HCl Plan in this experiment I am investigating the rates of reaction, and the effect different changes have on them. The rate of reaction is the rate of loss of a reactant or the rate of formation of...

Words: 2747 View(s): 672 Comment(s): 0
HYPOTHESIS We can recognize four... HYPOTHESIS We can recognize four types of substances due to their structure: ionic, metallic, covalent, and molecular. If a given substance has a metallic luster, is malleable and ductile, is a good conductor of heat and electricity, and has high melting and boiling points, than it is supposed to be a giant metallic structure. If a given substance has low melting and boiling points and does not conduct electricity, it surely is a molecular structure. If a given substance is soluble in water and in other polar solvents, if it conducts electricity after being melted or dissolved, and if it has high melting and boiling points, we can predict that it is a giant ionic structure. So we will have to check which of these properties does a given substance have. APARATUS spatula stirring rod open electric circuit batteries, light bulb, electric wire with two dismantled endings two metal plates the first made of copper, the second made of zinc plastic wash bottle test tubes in amount of 4 watch glasses in amount of 5 Bunsen burner test-tube rack porcelain crucible crucible tongs triangle tripod I decided to use separate watch glass for each substance to avoid possible laboratory errors resulting from contamination with the previous one. CHEMICALS substance A "“ white, granulated powder substance E "“ silver nodules, apparent metallic luster substance C "“ tiny, white crystals substance D "“ a bit larger white crystals substance B "“ black powder distilled water SAFETY RULES Be careful while burning substances in a flame! Don't put your hand into water when the electric current flows "“ you can have your skin seriously damaged! Do not touch hot crucible with bare hand, use crucible tongs! PROCEDURE I put a few grams of each substance except for substance E, which I put into a watch glass using a spatula into separate test tubes, placed in a test tube rack. I put a hint of each substance into separate watch glass. I use open electric circuit in order to investigate electric conductivity of each substance in solid state. I pour a few droplets of water into each watch glass using plastic wash bottle. Then I mix each substance with a stirring rod in order to make process of dissolving faster and more effective. I put two metal plates into each watch glass, so they are partly sunk in the water or solution, if it was formed in the manner one ending of the electric wire sticks to the first plate, and the second ending sticks to the second plate, and it is important that plates do not touch each other. Then I observe whether the light bulb is shining. I take a hint of each substance one by one, using a spatula. I put each substance into a porcelain crucible. I put crucible on a triangle placed on a tripod above the Bunsen burner. Then I turn the burner on and wait up to a minute in order to check whether the melting point is low or high. To handle the crucible I use crucible tongs. Note: I carefully clean spatula before using it again and again, I do the same with the stirring rod and porcelain crucible. DATA COLLECTION A B C D E Conductivity in solid state - + - - + Conductivity after being dissolved - - + - - Solubility in water + - + - - Melting point low high high high high CONCLUSION Substance A is soft and granulated. This substance has low melting point, what indicates that the intermolecular forces are weak. It does not conduct electricity, because molecules are not charged. So substance A has undoubtedly molecular covalent structure. However, on contrary to other substances with molecular covalent structure, it is quite soluble in water, what means that its' molecules can form hydrogen bonds to the water to compensate for the water-water hydrogen bonds broken. Example of such molecules are sugar molecules, so this substance is probably sucrose. In the case of the substance E there is an apparent metallic luster, so it has the giant metallic structure. This metal has high melting point, because it takes a lot of energy to break up a lattice of ions in a sea of electrons with strong forces of attraction, called metallic bonds, between them. Metals are good conductors of electricity because the delocalized, free electrons can move through the lattice carrying charge, when a voltage is applied across the metal structure. The substance C is the only substance aqua solution of which conducts electricity, so it has to have giant ionic structure. It's because the water molecules, which are dipoles, can attract the ions away from the lattice. The ions move freely, surrounded by water molecules. Dissolved or melted ionic compound conducts electricity, because the lattice breaks up and the ions are free to move as charged particles. It can be assumed that substance D is a giant covalent structure, because it is insoluble, it is very hard, but brittle, it forms crystal lattice, and it has high melting point. In addition, this substance does not conduct electricity at all. Substance B is soft and brittle in touch - the sheets can slide over each other easily. It may indicate that this substance has a molecular structure, like the first one. But it has much higher melting point than molecular substances. Besides that, it conducts electricity in solid state, and it does not dissolve in water. This set of properties is very specific "“ it is a combination of single properties of different types of structures. The fact that this substance could well be used as a lubricant layers are easily rubbed off could indicate that this substance can be graphite. EVALUATION After an experiment was finished, our chemistry teacher wrote the names of substances that we were to determine structures of, on the blackboard, so we could verify if our findings were correct and propose improvements to the method in case they were not. And so: substance A appeared to be glucose, substance B "“ graphite, substance C "“ sodium chloride, substance D "“ silicon dioxide, and substance E "“ chromium metal. My predictions according to substance A appeared to be correct. In case of substance E, which is chromium metal, I also obtained correct results. I think that this substance, like it is in case of all metallic substances, has a structure very easy to determine experimentally, even, to say, with bare eye, because we know that metals are the only type of substances that perform a property called metallic luster. Other properties I observed also form a set of properties typical for metal, which is chromium in this case. I was right in case of substance C, which, as it appeared later, is sodium chloride, and sodium chloride is the most characteristic representative of ionic substances. My assumptions relating to substance D are also proved to be correct, since I know now that this substance was silicon dioxide, commonly occurring as quartz, being a good exemplification of properties connected with a giant covalent structure. In case of substance B, I was again right, due to the fact that this substance appeared to be graphite, as I have predicted. Graphite is another example of giant covalent structure, but, on contrary to silicon dioxide, it conducts electricity "“ this property is specific only for this particular substance.   

HYPOTHESIS We can recognize four types of substances due to their structure: ionic, metallic, covalent, and molecular. If a given substance has a metallic luster, is malleable and ductile, is a good conductor of heat and electricity, and has high melting and boiling points, than it is supposed to...

Words: 1217 View(s): 345 Comment(s): 0