Related Keywords

No Related Keywords

Register NowHow It Works Need Essay Need Essay
I am measuring the rate of reaction how fast a reaction takes of sodium thiosulphate and hydrochloric acid. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I am going to do two experiments, one changing the temperature and one changing the concentration of the sodium thiosulphate. This is how they will be done. Planning Experimental Procedures Equipment Sodium thiosulphate Na S O of different concentrations Hydrochloric acid HCl Tile marked with a cross Measuring cylinder x2 Beaker x2 Bunsen Tripod Test tube x2 Stopwatch Thermometer As the diagrams show, firstly I will measure the right amount of sodium thiosulphate and hydrochloric acid into two separate test tubes. If it is needed, these will then be put into water and heated with a Bunsen burner and tripod until they are up to temperature, which will be measured with a thermometer in the water. They will then be put into the beaker. Firstly, the experiment will be done with the substances at room temperature. This means that the beaker will be filled with Na S O and HCl via two measuring cylinders and placed on the tile marked with a cross. The amount of Na S O and HCl being put in the beaker will be determined by prior tests, but they will only need to be quite small amounts. As soon as the two substances are mixed together, the stopwatch will start timing and it will stop when the cross is obscured. When the substances need to be heated, they will be put in separate test tubes and heated in a beaker of water as above. They will be mixed together when up to temperature. One of the experiments will show the difference temperature makes and the other will show the difference the concentration of the sodium thiosulphate makes. During the experiments, goggles and aprons will be worn at all times for safety. The tests will be made fair by the fact that only one thing will be changed each time "“ the temperature or concentration of the sodium thiosulphate. We presume that when the concentration of the Na S O is increased, the rate of reaction will be higher. This is because if there are more molecules, they are more likely to collide and react. However, the collision theory says that a very small percentage of these collisions results in a reaction. This is because of an energy barrier. Only those particles with enough energy to overcome the energy barrier will react when they collide. So, if the frequency of collisions is increased, the rate of reaction will increase. However, the percentage of successful collision will remain the same. The particles go through random collisions in which energy is transferred between the colliding particles and this leads to particles with differing energies. The distribution of the energies of a particle of gas is shown by the Maxwell-Boltzmann energy distribution curve, shown below. We would also presume that when the temperature is increased it will have the same effect. This is because the molecules will collide more often and with greater energy and so will be more likely to successfully react because their bonds break. For an average reaction a 10 C temperature rise doubles the rate of reaction because about twice as many particles possess the necessary activation energy. The next diagram shows Maxwell-Boltzmann distribution curves for a fixed mass of gas at two temperatures T and T where T is about 10 C higher than T . The total area under the curve remains the same since there is no change in the number of particles present. So, I predict that in the experiment were the temperature is varied, the rate of reaction will go up as the temperature goes up. In the experiment where the concentration of the thiosulphate is to be varied, I expect the rate of reaction to go up as the concentration goes up. If the concentration doubles, I would expect the rate of reaction to double and if the concentration is zero I would expect the rate of reaction to be zero. In the graph showing temperature compared to rate of reaction, I would expect there to be negative correlation and in the graph showing concentration compared to rate of reaction, I would expect there to be negative correlation. However, it remains to be seen if the results will follow this theory. Here are the results tables that will be used: Temperature 1st results 2nd results Average Rate Of Reaction C seconds seconds seconds seconds Room approx.20 30 40 50 60 70 This is for the first half of the experiment where everything will be kept the same except the temperature which will range from 20 C to 70 C. It is hoped that there will be sufficient time for two experiments and an average will be calculated afterwards. The concentration of the sodium thiosulphate used throughout will be 30g/dm. Concentration 1st results 2nd results Average Rate Of Reaction g/dm seconds seconds seconds seconds 15 20 25 30 35 40 This is the other section to the experiment where everything will be constant apart from the concentration of the sodium thiosulphate. It has been decided that a concentration of no less that 15g/dm will be tested because any less than this would probably take too long. The hydrochloric acid and the sodium thiosulphate will not be heated and the tests will be done at room temperature, usually around 20 C. The experiment will be done twice or three times if possible and the results will be made fair by the fact that only one thing will vary each time. Goggles and aprons will be worn at all times for safety. It has been decided that 5ml of HCl and 20ml of Na S O will be used. Obtaining Evidence These are the results of the experiments: Temperature 1st results 2nd results Average Rate Of Reaction C seconds seconds seconds secs Room approx.20 74.5 69.9 72.2 13.85 30 38.1 38.3 38.2 26.18 40 35.9 39.4 37.65 26.56 50 20.7 18.1 19.4 51.55 60 12.3 9.9 11.1 90.09 70 5.9 5.2 5.55 180.18 Concentration 1st results 2nd results Average Rate Of Reaction g/dm seconds seconds seconds secs 15 125.2 123.5 124.35 8.04 20 74.5 69.9 44.2 13.85 25 53.6 51.2 52.4 19.08 30 49.6 51.6 50.6 19.76 35 45.7 48.8 47.25 21.16 40 22.6 30.5 26.55 44.35 Analysing evidence and drawing conclusions All results have now been obtained and they seem to be quite good, all showing correlation. As was hoped at the start, a repeat was managed for each test and an average worked out from those figures. The results were recorded with decimal place and the averages and rate of reactions are to two decimal places. The rate of reaction is the key thing being looked at in this experiment and this is how it was calculated: 1 Time taken for cross to be obscured This figure was then multiplied by 1000 to make it easier to deal with. The figures have all been rounded to two decimal places. My predictions have been correct. When the concentration of the sodium thiosulphate has gone up, as the first part of the experiment shows, the rate of reaction goes up. When the temperature goes up, as the second results table shows, so does the rate of reaction. This is what was expected and therefore makes it highly unlikely that there have been any major mistakes, although all results are obviously not perfect. The next three pages are graphs. Graphs one and two relate to the first table of results and graph three relates to the second table. The reason there are two graphs for the first table is that one shows time taken for cross to be obscured and the other shows rate of reaction. Rate of reaction is what is being investigated and so only a rate of reaction graph was needed for table two. There are two graphs for the first results table to show the difference in time taken and rate of reaction i.e. the time taken for cross to be obscured shows negative correlation while graph two shows positive correlation. By drawing a line of best fit on the rate of reaction graphs, we can see that there are no results that are obviously completely wrong. With both graphs the last result is suprisingly high, and this can be seen on the results table as well. Evaluating Evidence The procedure used was good and produced good results but it could have been improved and these will be listed later. The results are mainly good, there are no odd results and everything came out as expected. This could mean that the experiment was done perfectly but it doesn't. Although all the average times and rates of reaction all conform to a pattern, they are not all evenly spaced and therefore are probably not perfect. As an example, in the first experiment, where the temperature was being varied, the rates of reaction of 30 C and 40 C were 26.18secs and 26.56secs respectively. This was only an increase of 0.38secs compared to an increase of 90.09secs for 60 C to 70 C from 90.09secs to 180.18secs . Clearly this is an enormous difference and disproportionate. The results could be correct but the results do appear to nearly double each time, except for in this instance. There are similar examples from the second experiment but they are not as obvious. Improvements that could be made if the experiment was repeated: When doing the results that took less time some took around five seconds, it would have been more accurate to have two people so one person could put the substances together while the other person started timing Obviously it would have been good to have done more repeats. Two tests were managed each time but if one had been wrong this could have dramatically changed the average time and therefore rate of reaction. Increasing the surface area of a reactant will increase the rate of a reaction. This is because the reacting particles can only collide with he surface of the solid and the particles within the solid cannot react until those on the surface have reacted and moved away. Powdered calcium carbonate has a much larger surface are than the same mass of marble chips and therefore will react more quickly. All in all I think this was a good experiment and the best that could have been done with the time and resources available. The results supported my predictions and they seem to be fairly reliable results. Aim : We did 4 experiments to find out how the rate of reaction changes with differing concentrations of Sodium Thiosulphate, Hydrochloric Acid and water. As an inert and stable liquid, water was used to alter concentration of Sodium Thiosulphate without changing the end amount of solution. All the atoms in a water molecule have a full outer shell, so they would not react with the other chemicals. WATER IS USED TO SLOW THE REACTION SO THAT IT IS EASIER TO TIME HOW LOG
0 User(s) Rated!
Words: 2030 Views: 476 Comments: 0
I am measuring the rate of reaction how fast a reaction takes of sodium thiosulphate and hydrochloric acid. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I am going to do two experiments, one changing the temperature and one changing the concentration of the sodium thiosulphate. This is how they will be done. Planning Experimental Procedures Equipment Sodium thiosulphate Na S O of different concentrations Hydrochloric acid HCl Tile marked with a cross Measuring cylinder x2 Beaker...
supported my predictions and they seem to be fairly reliable results.

Aim : We did 4 experiments to find out how the rate of reaction changes with differing concentrations of Sodium Thiosulphate, Hydrochloric Acid and water. As an inert and stable liquid, water was used to alter concentration of Sodium Thiosulphate without changing the end amount of solution. All the atoms in a water molecule have a full outer shell, so they would not react with the other chemicals.

WATER IS USED TO SLOW THE REACTION SO THAT IT IS EASIER TO TIME HOW LOG

Become A Member Become a member to continue reading this essay orLoginLogin
View Comments Add Comment

Rates of reaction Plan ...Rates of reaction Plan Aim: In this experiment I will find the rate of reaction between Sodium thiosulphate NaS2o3 and Hydrochloric acid HCl. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I will investigate how temperature affects the rate of reaction between Sodium thiosulphate and Hydrochloric acid. Prediction When sodium thiosulphate and hydrochloric acid react they produce a cloudy precipitate. The two chemicals are both clear solutions and will react together to form a yellow precipitate of sulphur, the equation for which is as follows: NaS2O3 aq+ HCll¨Sg+NaCls+ H2Ol+SO2s As the solution will turn cloudy, we can observe the rate of reaction by placing a black cross underneath the beaker and seeing how long it takes for it to disappear. There are factors that affect this experiment such as temperature, concentration and time. I do not think that surface area will affect the experiment, as both chemicals are liquids. For my experiment I will study temperature as this is easily observed and can be easily varied. I think that as the temperature of sodium thiosulphate increases, the amount of time taken for a reaction decreases. I know this because before two particles can react they must meet. The higher the temperature there is the more successful collisions between other particles is increased. When temperature increases the bonds in NaS2O3 break quicker because more energy is available greater than the activation energy of the reaction. As a result S2O3 2- ions are available so it takes less time to bond with H+ ions from HCL and new bonds are formed quicker and therefore sulphur precipitates quicker and the rate of reaction increases. S2o3 2- aq +2H+ aq S02aq+Sg+H2Ol When the temperature increases it causes an increase in kinetic energy so you have more chances of successful collisions between NaS2O3 particles and HCl particles so the rate of reaction increases. Also more activation energy is made available to overcome the activation energy of the reaction; the reactants have greater energy than the activation energy, so the reaction takes place quicker. I will keep the concentration of NaS2O3 constant to prevent more successful collisions as there would be more particles available if a higher concentration is fed which will increase successful collisions. I will also keep the concentration of HCl constant as an increase or decrease in concentration will affect the rate of reaction. I will change the temperature of NaS2O3 so I can see how the temperature affects the rate of reaction. I will keep the temperature of the HCl acid at room temperature as we are only concentrating on the NaS2O3 and if we heat the HCl it might affect the rate of reaction it would not be a fair test if we heat the HCl when we are observing how NaS2O3. I also predict that every time the temperature increases by 10oC the rate of reaction doubles. The preliminary results Time on heat sec Temperature of NaS2O3 0C Time taken for cross to disappear sec 0 24 60 10 34 52 Method For the preliminary experiment I heated the NaS2O3 to get it to the temperature I wanted but it was difficult to get the NaS2O3 to the right temperature so the results were not as accurate, but for my real experiment I will use a water bath to get accurate results instead of a Bunsen burner. For the preliminary experiment I only recorded the temperature of the NaS2O3 but for my real experiment I will record the temperature of the HCl as well to get more accurate results because if the NaS2O3 was high and the HCl could bring the temperature down quicker and also have to make sure all the temperature of the HCl is the same. I will also take the temperature of the mixture so I know the temperature at which the reaction took place. 1. I will set up my apparatus and put an X on a piece of paper and measure out 50ml of NaS2O3 and 10ml of HCl. 2. I will pour the NaS2O3 into a conical flask and measure the temperature and pour the HCl in to the same conical flask and time how long it will take for the cross on the paper to disappear. 3. I will do 4 different temperatures and I will do them three times each to get accurate results. 4. I will record the results in a table of results. Apparatus used Sodium thiosulphate NaS2O3-50ml Hydrochloric acid HCl-1M Conical flaskx2 Measuring cylinderx2 Thermometer Water bath at different temperatures Paper marked with X Stop watch Distilled water Analysis From graph 1 I can see that when temperature increases the time taken for reaction to take place decreased. In graph 2 I can see when temperature increases the rate of reaction increases. There was an anomalous result in graph 2, when the temperature was 480C and 1€time was 1.18. My results agree with my prediction because I predicted that the higher the temperature the lower the time taken for the reaction to take place and we can see this from the graphs. The graph shows this pattern taking place. For my experiment I studied temperature as this is easily observed and can be easily varied. The temperature of sodium thiosulphate increased, and the amount of time taken for a reaction decreased. When temperature increased the bonds in NaS2O3 broke quicker and more energy is available greater than the activation energy of the reaction and S2O3 2- ions are available so it takes less time to bond with H+ ions from HCl and new bonds were formed quicker and therefore sulphur precipitated quicker and the rate of reaction increased. This is why in graph 2, I had a strait line positive correlation graph. When the temperature increased it caused an increase in kinetic energy so we had more successful collisions between NaS2O3 particles and HCl particles and the rate of reaction increased. Also more activation energy was made available to overcome the activation energy of the reaction; the reactants had greater energy than the activation energy, so the reaction took place quicker. I think my results support my prediction because I predicted when temperature increases the rate at which the reaction takes place is faster. In graph 2, the theory that every time the temperature increases by 10oC, the rate of reaction will double did not work in my experiment and the results of that theory is given below: 10"¹C¨0.018 0.024€0.018=1.333 20"¹C¨0.024 0.052€0.024=2.167 30"¹C¨0.052 0.078€0.052=1.500 40"¹C¨0.078 0.086€0.078=1.103 50"¹C¨0.086 0.104€0.086=1.209 60"¹C¨0.104 0.120€0.104=1.154 70"¹C¨0.020 0.1380.120=1.1500 80"¹C¨0.138 Evaluation I think my method worked well as I repeated the experiments three times for five different temperatures and got three results which were similar. I think the experiment worked but when we used NaS2O3 with a high temperature, it was difficult for us to time the reaction as it was more rapid than we had expected. If I had the chance to repeat the experiment I would concentrate on the concentration of the NaS2O3 rather than the temperature as there are a lot of factors which could affect the temperature. I think my experiment was done reasonably well as l got similar results when I repeated them three times. There was one anomalous result in graph 2 and I think there was an anomalous result because the NaS2O3 was at a high temperature and the reactants reacted rapidly that the timing was wrong. I also think this was caused by the open window we worked next to which brought the temperature down quickly. I think my results are fairly reliable and it supports my analysis as I said, when temperature increased the time taken for the reaction to take place decreased. I could try the experiment with different methods and different reactants to get additional knowledge. I could use magnesium instead of Sodium thiosulphate and I could heat the hydrochloric acid instead of heating the NaS2O3 and to make more of a fair test I could make sure all the windows and doors are closed and no cold air comes in.   

Rates of reaction Plan Aim: In this experiment I will find the rate of reaction between Sodium thiosulphate NaS2o3 and Hydrochloric acid HCl. There are different variables I could use to see the change in the rate of reaction. These include temperature, concentration or catalysts. I will...

Words: 1454 View(s): 266 Comment(s): 0
For this investigation I am... For this investigation I am reacting magnesium ribbon Mg with Hydrochloric acid HCl I am measuring the rate of reaction between the two, and to do this am measuring the hydrogen given off by the reaction. Magnesium is a shiny silver coloured metal, an element with an atomic number of 12, which belongs to the group 2 alkali metal group; it therefore has only two orbiting electrons and is very unstable and reactive. Hydrochloric acid is a solution of hydrogen and chloride a colourless acidic gas in water, Hydrochloric Acid has a high acidity and therefore will react with an alkali metal, the magnesium will displace the hydrogen and bond with the chlorine giving off hydrogen gas and producing the salt magnesium chloride. To keep the experiment fair I must look at all the factors in the reaction, firstly the concentration of the hydrochloric acid is important because it determines how fast the reaction will happen, more HCl molecules in the hydrochloric acid solution will produce more collisions with the magnesium and dissolve it quicker this is the only variable which I am planning to vary, I will keep the different variations of acid in different containers to prevent contamination and will wash out containers before I use them too, the heat of the reaction will also determine how fast it takes place, more heat means more movement of molecules and more collisions between the HCl and the Mg particles, the amount of magnesium will also effect the reaction rate so I will use measured amounts that are all the same, and the surface area of the magnesium must be kept constant too because more surface area means more collisions and effects reaction speed, the apparatus used will be kept the same to give the reaction the same amount of room to take place in, keeping the equipment still which will reduce vibrations which in turn effect the reaction rate, the amount of hydrochloric acid used will be kept constant too because more HCl acid means more HCl molecules to collide with the magnesium, there is also the pressure at which the reaction takes place which will cause more reaction because the particles would be pushed closer together, although the gas given off would have to be measured at room pressure or the volume would be changed by the pressure, The issue of room temperature and the starting temperature of the solution will also be kept constant by keeping the acid bottles in a constant temperature and measuring the temperature at the beginning of the experiment to make sure that this temperature stays the same and therefore there will be a constant amount of activation energy and the reactions will start with the same amount of heat present and therefore will start at the same rate of reaction if no variables were changed. I am not planning to vary the pressure because it brings up to many complications and is not needed, I will start the stop watch as soon as the magnesium ribbon hits the acid and close the bung instantly, also to do this someone else will time for me while I handle the magnesium and close the bung up, I will also clean the jar in which the reaction was carried out to prevent inconsistencies in the strength of acid and possible side effects caused by residues left from the reaction. To carry out the experiment we will be using a conical flask which the reaction will take place in, a bung with tubes coming out of it for the gas to flow down, 4 small measuring cylinders to measure the amount of acid used the measuring cylinders measure in ml, which is equivalent to cm3 in a ration of 1:1 so we can use them to measure the volume of the gas, a margarine tub filled with water and a large measuring cylinder filled with water which will be put upside down in the water to measure gas produced by the reaction, varied strengths of hydrochloric Acid in 10ml quantities, Magnesium ribbon in4cm lengths, a stop watch to time the reaction, and safety goggles for protection from acid splashes. The hydrochloric acid will be put in the conical flask, the magnesium will be dropped in to start the reaction, the bung will be promptly placed on top of the conical flask, from the bung tubes run in to the margarine tub full of water and under the measuring tube so that when the reaction takes place gas will be pushed through the tube and collect in the measuring cylinder. There will be 4 variations of the acid strength, 2 molar, 1.5 molar, 1 molar, and 0.5 molar. I predict that the higher the concentration of the acid the quicker the reaction, but there will be a point where all the magnesium is depleted and the reaction rate will level out, some of the weaker concentrations will not reach that level, but some of the stronger ones should and there will be a point where there is no more magnesium to react and the gas is no longer produced. Before I did the actual experiments I tried some preliminary tests with some 1m acid and some 2m acid, the hydrogen was produced as soon as I dropped the magnesium ribbon in the acid, and the 2m acid reaction finished quicker than the 1m acid reaction, this determines that my original assumption was correct and the magnesium was dissolved quicker in the 2m acid, although both reactions produced the same amount of gas because I used the same amount of magnesium and therefore the reaction was limited to the amount of magnesium to react with, I tested the gas produced under a flame and it produced a high pitched squeak which indicated the presence of hydrogen and proves more of my hypothesis correct and I can determine that when the magnesium ribbon reacts with the hydrochloric acid, magnesium chloride is formed. Here is a graph to show my preliminary test results. Time 1m HCl 2m HCl 30 "“ 0:30 22 cm3 43 cm3 60 "“ 1:00 33 cm3 45 cm3 90 "“ 1:30 43 cm3 46 cm3 120 "“ 2:00 45 cm3 46 cm3 150 "“ 2:30 46 cm3 46 cm3 180 "“ 3:00 46 cm3 46 cm3 210 "“ 3:30 46 cm3 46 cm3 240 "“ 4:00 46 cm3 46 cm3 It would appear that the reaction levels out at the point where 46 cm3 of hydrogen gas is produced when using a 4cm long piece of magnesium. I wrote down the equation to show the reaction between the 2 reactents: Magnesium + Hydrochloric acid = Magnesium Chloride + Hydrogen Mgs + 2HClaq = MgClaq + Hg I will repeat each experiment 4 times to smooth out inconsistencies and be able to produce an average result. To ensure that the experiment is carried out safely I will wear protective goggles at all times when handling acid, stand up while doing experiments to get out of the way quickly in the case of acid spills, and keep a clear and tidy workspace around me to prevent things getting in the way and being damaged by acid. With the equipment set up I would drop the magnesium In to the acid, then begin timing for a set amount of time even if the reaction had finished, and measure the gas produced in the large measuring cylinder and note the volume every 30 seconds for 4 minutes. Here are my 4 results tables Time 0.5m HCl 1m HCl 1.5m HCl 2m HCl 30 "“ 0:30 7 cm3 23 cm3 39 cm3 43 cm3 60 "“ 1:00 12 cm3 34 cm3 42 cm3 45 cm3 90 "“ 1:30 19 cm3 42 cm3 45 cm3 47 cm3 120 "“ 2:00 26 cm3 46 cm3 47 cm3 47 cm3 150 "“ 2:30 30 cm3 46 cm3 47 cm3 47 cm3 180 "“ 3:00 34 cm3 46 cm3 47 cm3 47 cm3 210 "“ 3:30 37 cm3 46 cm3 47 cm3 47 cm3 240 "“ 4:00 39 cm3 46 cm3 47 cm3 47 cm3 Time 0.5m HCl 1m HCl 1.5m HCl 2m HCl 30 "“ 0:30 7 cm3 21 cm3 38 cm3 44 cm3 60 "“ 1:00 11 cm3 35 cm3 43 cm3 46 cm3 90 "“ 1:30 16 cm3 42 cm3 45 cm3 47 cm3 120 "“ 2:00 27 cm3 47 cm3 48 cm3 47 cm3 150 "“ 2:30 32 cm3 48 cm3 48 cm3 47 cm3 180 "“ 3:00 35 cm3 48 cm3 49 cm3 47 cm3 210 "“ 3:30 37 cm3 48 cm3 49 cm3 47 cm3 240 "“ 4:00 40 cm3 48 cm3 49 cm3 47 cm3 Time 0.5m HCl 1m HCl 1.5m HCl 2m HCl 30 "“ 0:30 6 cm3 20 cm3 38 cm3 44 cm3 60 "“ 1:00 12 cm3 33 cm3 43 cm3 47 cm3 90 "“ 1:30 17 cm3 43 cm3 46 cm3 48 cm3 120 "“ 2:00 26 cm3 48 cm3 49 cm3 48 cm3 150 "“ 2:30 29 cm3 49 cm3 49 cm3 48 cm3 180 "“ 3:00 34 cm3 49 cm3 49 cm3 48 cm3 210 "“ 3:30 36 cm3 49 cm3 49 cm3 48 cm3 240 "“ 4:00 39 cm3 49 cm3 49 cm3 48 cm3 Time 0.5m HCl 1m HCl 1.5m HCl 2m HCl 30 "“ 0:30 8 cm3 25 cm3 40 cm3 45 cm3 60 "“ 1:00 13 cm3 35 cm3 47 cm3 47 cm3 90 "“ 1:30 19 cm3 42 cm3 49 cm3 49 cm3 120 "“ 2:00 26 cm3 49 cm3 49 cm3 49 cm3 150 "“ 2:30 32 cm3 50 cm3 49 cm3 49 cm3 180 "“ 3:00 36 cm3 50 cm3 49 cm3 49 cm3 210 "“ 3:30 39 cm3 50 cm3 49 cm3 49 cm3 240 "“ 4:00 42 cm3 50 cm3 49 cm3 49 cm3 These are the 4 sets of results, I recoded 2 each lesson, the last results seem to be react slightly quicker than the others, this could be due to temperature of the room or contamination of the equipment, the reactions seem to have happened quicker, although they don't seem to be too random and I will use them in my average table set of results. Time 0.5mHCl 1mHCl 1.5mHCl 2mHCl 30 "“ 0:30 7 cm3 22.25 cm3 38.75 cm3 44 cm3 60 "“ 1:00 12 cm3 34.25 cm3 43.75 cm3 46.25 cm3 90 "“ 1:30 17.75 cm3 42.25 cm3 46.5 cm3 47.25 cm3 120 "“ 2:00 26.25 cm3 47.5 cm3 48.25 cm3 47.25 cm3 150 "“ 2:30 30.75 cm3 49 cm3 48.25 cm3 47.25 cm3 180 "“ 3:00 34.75 cm3 49 cm3 48.5 cm3 47.25 cm3 210 "“ 3:30 37.25 cm3 49 cm3 48.5 cm3 47.25 cm3 240 "“ 4:00 40 cm3 49 cm3 48.5 cm3 47.25 cm3 It was noticeable, when looking at the results table, that the more concentrated acid had a faster rate of reaction than the less concentrated acid. This was probably because there are more particles in a concentrated acid and therefore more collisions will occur, for example; the 0.5 molar acid reactions produced on average 7 cm3 of hydrogen gas in the first 30 seconds, whereas the 1.5 molar acid reactions produced on average 38.75 cm3 of hydrogen gas in the first 30 seconds. The results appear to level out at around about 48.4cm3; the concentration of the 0.5 acid reactions does not level out because we stopped the timer before the reaction had time to complete. I have made a graph of the average reaction rate for this experiment. The numbers along the bottom indicate time; the numbers along the side indicate cm3 of gas produced. The graph supports my original prediction, it shows that the higher the concentration of the acid in molars the faster the reaction occurs and hydrogen is produced quicker, therefore I can deduce that In a higher concentration there are more acid particles to react with the magnesium ribbon and therefore it is dissolved faster. Therefore if you increase the concentration of the acid you are introducing more particles into the reaction which will in turn produce a faster reaction because there will be more collisions between the particles which is what increases the reaction rate. If we would have carried on the practical for a longer time the 0.5 molar reactions would have eventually levelled out at about 48.4cm3. While performing the experiment I had to ensure that the temperature was kept constant throughout, because varying temeperature will vary the results, if the temperature increases from the start time to the finish time then the reaction speeds will get quicker at a slightly greater rate, there was also the issue of room temperature which we measured but could not do much about because the room is a large environment and has many sources of heat. The reaction could have been sped up or slowed down in many ways but the amount of hydrogen produced remains constant. There are always ways to improve an experiment like this, I could have measured the temperature of the acid to make sure that it all started at the same temperature, and could have recorded temperature results while doing the practical too, so that I have 2 sets of results for each experiment, and could compare these and analyse how they are relevant to the experiment. Also the measuring of the acid could have been improved using small measuring syringes, and the measuring of the hydrogen produced could also be improved using the gas measuring syringe which would have produced much more accurate results because getting the upturned measuring cylinder in water without letting air in was difficult and the reading of the measuring cylinder could have been improved using the gas measuring syringe because the results would have been more accurate. Also weighing the magnesium ribbon, and cutting it more precisely would have helped get more accurate results, the magnesium was also covered in a white powder, some pieces more so than others, this is magnesium oxide, produced where the magnesium has been exposed to air, the pieces with more magnesium oxide on them would have less magnesium to react with the acid and the oxide may slow the reaction by getting in the way, or reacting with the acid and producing water. I could have cleaned each piece of magnesium with some emery cloth to reduce the magnesium oxide. I could have also tried varying other constants in my experiment, beginning of the year I temperature, the presence of a catalyst, the surface area of the magnesium or the pressure of the reaction chamber. These differentials in the variables would affect the reaction rates in different ways, but the tests all followed the same predicted pattern and shows that there is a level where all the magnesium is depleted, if we had used more magnesium and less hydrochloric acid we could have found a point where the amount of hydrochloric acid levels out before the magnesium, but we would have to use a lot of magnesium because using a small amount of hydrochloric acid would make it much harder to measure the results with current equipment. I also did some extra tests using 3 cm pieces of magnesium, and measuring how much gas was produced, to do these measurements we used the same equipment apart from the measuring cylinder which was replaced with the gas measuring syringe, the measuring syringe was much more accurate than the cylinder, and gave us better readings. The amount of gas produced from the 3cm piece of magnesium levels out at a point of 32 cm3 if we put this in a line graph with the maximum amount of hydrogen produced from the 5.5 cm pieces of magnesium we can predict how much the most amount of hydrogen that can be produced by a reaction between a different length of magnesium with hydrochloric acid. Here is a graph of the readings I got using the 4 cm piece of magnesium. Time 0.5m 1m 1.5m 2m 30 - 0:30 8 12 27 29 60 - 1:00 12 17 33 31 90 - 1:30 17 25 34 31 120 - 2:00 19 28 34 31 150 - 2:30 23 33 34 31 180 - 3:00 26 35 34 31 210 - 3:30 28 35 34 31 240 - 4:00 30 34 34 31 the results are much more varied in these tests, this could be due to greater accuracy and being able to note these variances, or from some sort of contaminant, the average amount of gas produced for a 5.5 cm piece of magnesium was 48.4 cm3 the average amount of gas produced for a 3 cm piece of magnesium was 42 cm3 the more magnesium means there are more magnesium atoms to react with the hydrochloric acid molecules and therefore more hydrogen is produced, if we put these in to a line graph we can use it to estimate how much hydrogen would be produced by other lengths of magnesium. I have drawn a line of best fit between the two points, with this graph we can estimate how much hydrogen would be produced if we reacted 1cm of magnesium. The graph gives a reading of around about 18 cm3 of hydrogen gas produced, if I had extra time we could test this theory, but unfortunately we do not. I also only did one set of results for the tests with the gas syringe, if I would have been able to continue this experiment further I could have produced more average results and seen if my predictions for the 1 cm piece of magnesium was correct. We could have also varied the concentration of the acid more so, and used less or more acid to get more accurate results or results for different test situations, instead of changing the strength we could have changed the amount of acid, or the temperature of the acid, or try varying these together and see how they effect each other.   

For this investigation I am reacting magnesium ribbon Mg with Hydrochloric acid HCl I am measuring the rate of reaction between the two, and to do this am measuring the hydrogen given off by the reaction. Magnesium is a shiny silver coloured metal, an element with an atomic...

Words: 3186 View(s): 604 Comment(s): 0