Related Keywords

No Related Keywords

Register NowHow It Works Need Essay Need Essay
The rate of Hydrochloric acid reacting with magnesium ribbon.
0 User(s) Rated!
Words: 3653 Views: 315 Comments: 0
Introduction In the reaction between hydrochloric acid and magnesium ribbon, the hydrochloric acid will dissolve the magnesium and produce hydrogen gas. All chemical reactions involve reactants which when mixed may cause a chemical reaction which will make products. In my case the reactants are hydrochloric acid and magnesium ribbon. The chemical reaction takes place when the magnesium ribbon is dropped into the hydrochloric acid. The products that are formed during this reaction are hydrogen gas and magnesium chloride. The formula equation for this experiment is: Mg + 2HCl r MgCl2 + H2 Magnesium + Hydrochloric...
be similar to the ones I already have, so I would not use this for any further experiments. The reason I could use a different type of acid for any further work is to find if the is a difference between them if their molecular build up is different.

I could also use the less reactive metals of the reactivity series zinc, aluminium, iron and lead that way I could find the initial rate of reaction at 5 seconds for the higher concentrations of acid like 3.0M or 3.5M and I could find there relative activity.

Become A Member Become a member to continue reading this essay orLoginLogin
View Comments Add Comment

The following shows the collision theory...The following shows the collision theory used to explain the effect of temperature and concentration Prediction: In this investigation I expect to find as I increase the temperature the reaction will take place faster. This is because as the temperature increases, it gives more energy to the sodium thiosulphate and hydrochloric acid particles causing them to collide more often and with more force; this increases the rate of reaction. As the temperature rises, a greater number of sodium thiosulphate and hydrochloric acid particles have energy greater than the activation energy therefore leading to more successful collision, and increasing the rate of reaction. * Plan: I will be mixing the two clear liquids 'Hydrochloric Acid' 1M "“HCl and 'Sodium Thiosulphate Solution' 40G/L - Na2S2O3, in order to observe and analyse the reaction changes if any when I increase the temperature. I will add 50cm of weak sodium thiosulphate and 5cm of hydrochloric acid into the beaker; I will make a quick mix of the solution before beginning to start the clock. I will watch the reaction and try to find out whether the solution goes milky and the cross disappears, this will indicate whether the reaction is done. Once the cross has disappeared in the solution I will stop the clock and record the results. Place Apparatus in middle of desk: Boiling tube, test tube, 600ml beaker, kettle, Distilled water bottle, Sodium Thiosulphate, Hydrochloric Acid, Stop Clock, Paper Cross, 25ml measuring cylinder, 100ml measuring cylinder and 10ml measuring cylinder. I will then draw a cross of any size on a piece of A4 paper Prepare Batch of sodium thiosulphate and distilled water using both a 100ml and 25ml measuring cylinders. Place 10cm of Hydrochloric acid into test tube using 10ml-measuring cylinder. Place 50cm of sodium thiosulphate/distilled water solution into boiling tube using a 25ml-measuring cylinder. Put water in kettle and switch on Place a cross on the outside of the 600ml beaker Place 150ml of cold water into 600ml beaker Mix the hot and cold water in beaker Use Thermometer to take the temperature of the sodium thiosulphate and distilled water and Hydrochloric acid with two thermometers in each test tube Wait for the temperature of both the Solution and Hydrochloric Acid to reach the required temperature Pour Hydrochloric acid into solution and start stop clock immediately Wait until cross disappears because of the cloudy solution, and then stop the stop clock Record the time in table Take the temperature of the mixture and record in table Pour away as soon as possible Wash boiling tube out with cold tap water then rinse with distilled water Take average of the start and finishing temperatures and times Repeat Experiments twice for each temperature to improve reliability or to make them reliable. Plot on graph The temperatures that I will carry out the experiments at 25, 30, 35, 40, 45°c. Fair test: I will be able to make this a fair test by keeping all of the solution the same amounts 50cm of weak sodium thiosulphate and 5cm of dilute hydrochloric acid. I will keep these variables the same: Concentration of 2HCl: Concentration of sodium thiosulphate and Hydrochloric acid "“ The concentration of sodium thiosulphate and hydrochloric acid will be kept the same, as to make it a fair test, because if you change the concentration of one reactant it changes the number of particles making the reaction unfair and not reliable. If you create batches of the reactants you reduce the percentage error of volume measurement and of the concentration. E.g. when you measure 25ml of water from a 25ml measuring cylinder a certain amount of water will stay in the cylinder, Then instead of water it was hydrochloric acid and some was left behind, it would change the total concentration because the number of particles has been reduced therefore there is less particles for the other reactant to collide with, also the chance of the amount left behind being the same will be small Volume of Na2S2O3: If I don't keep this constant then it'll effect the reation. Volume of 2HCl: if I don't keep this constant then it'll effect the reation. Temeperature of solution: If I don't keep this constant then it'll increase the energy of the particlesand also increase the chance of a successful collision. I will use the same cross for the whole experiment, also time it accurately and make sure my equipment is working. Equipment: Diagram *Sodium thiosulphate Hydrochloric acid Distilled water 2 Beakers Cross of A4 paper Burette Stopwatch Goggles Funnel Thermometer Water bath To follow this reaction you can measure how long it takes for a certain amount of sulphur to form. You do this by observing the reaction down through a conical flask, viewing a black cross on white paper see diagram below. The X is eventually obscured by the sulphur precipitate and the time noted. By using the same flask and paper X you can obtain a relative measure of the speed of the reaction in forming the same amount of sulphur. Mixè *èOngoing*èWatch stopped* Here is the preliminary result: * Safety: I will make the experiment safe by wearing goggles while handling the irritants and when the reactions are occurring during the experiment. Sulphur and sulphur dioxide are given off during the reactions and are irritants, if breathed in it is dangerous. To avoid this occurring I will keep the room well ventilated by opening windows so the gas can disappear. Each try I do I wash out the beaker several times before starting the experiment. I will make sure the hydrochloric acid does not get in contact with my hands. Analysis: The experiment shows, that when the hydrochloric acid is added to the sodium thiosulphate, a cloudy precipitate appeared. It also shows that when you increase the temperature at which a reaction is taking place, the particles move more quickly resulting in a faster reaction. This has two effects: 1 More collisions take place 2 When a collision occurs, there is more chance that the collision will lead to a reaction, because the amount of energy is more likely to be greater than the minimum amount of energy needed the activation energy Raising the temperature makes the particles move faster. This means that the particles collide more frequently with each other and the rate of the reaction increases. Also, the faster the particles are travelling, the greater is the proportion of them which will have the required activation energy for the reaction to occur. Refer back to prediction diagram HCl+sodium thiosulphatesodium chloride+sulphur dioxide+sulphur+water. HClaq + Na2S2O3aq NaClaq + SO2g + Ss + H2Ol Evaluation: I believe that my results, in general, were very much accurate as I repeated my experiment twice to be able to get an average time taken for the reaction to take place. Providentially, I had no anomalous results which proved the precision and accuracy of my experiment. The method did show the relationship between the temperature and the rate of the reaction. The line graph proves my hypothesis to be correct, but also provides me with some additional information. I have marked on the exact points of the average rate of reaction for every 5 ºC, you can see that at temp 30ºC the speed of reaction did not fall on the line of best fit. This was because the temperature was increased from the previous temp of 25ºC. At 25ºC, the particles would be moving quickly, but not as quickly as they are 30ºC, because as the temperature is increased the particles started moving more quickly and more frequently colliding with more energy so that a faster reaction occurred. Drawing in a line of best fit onto my graph, made it easier to get a more accurate picture from the results. My line graph showed positive correlation meaning that as the temperature was increased the rate of reaction increases. It's also a curve, levelling off gradually. For my Experiment, by having a 5°c rise in temperature allows the number of particles that have energy greater than the Ea Activation Energy 5.45times larger than the number before. This tells me that for this reaction the rate of reaction is almost double for a 5°c rise, therefore shows that the variables were controlled to a sufficient degree of accuracy to allow the reaction to take place at an optimum rate. The experiment was fair and reliable. However, to collect results that are far more accurate, I could have used a mechanical stirrer to act as a catalyst for speeding up the rate of reaction. This would become more precise and dependable. Another factor that we could have improved is the repetitions of experiments; I could have completed the test a further one more time to give me a more adequate average of my results. It was difficult to be able to get both the substances to the required temperature at the same time due to many human errors that can occur. Overall, from my investigation, I believe that the data provides sufficient evidence to support my collision theory as when I increased the temperature the rate of reaction increased. This has turned out to be a successful experiment.   

The following shows the collision theory used to explain the effect of temperature and concentration Prediction: In this investigation I expect to find as I increase the temperature the reaction will take place faster. This is because as the temperature increases, it gives more energy to the sodium thiosulphate and...

Words: 1538 View(s): 364 Comment(s): 0